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Heart rate variability (HRV) analysis has proved to be an important tool for 

assessing autonomic nervous system. For instance, it has been used during dipyridamole 

echocardiographic test to differentiate ischemic from nonischemic responses [6]. RR 

Interval analysis can provide additional information that can lead to early detection of a 

possible change in the activity of the autonomic nervous system. HRV analysis can be 

done using Wavelet Transform. This thesis presents a modification of an existing 

algorithm for extracting the R-R interval from EKG data sets and the use of wavelet 

transform (WT) technique to compute the time-frequency domain energy quantities. The 

project used data obtained previously from a study of the effects of two pharmacological 

agents, atropine and propranolol, on laboratory rats. Results showed that the ratio of high 



www.manaraa.com

              

  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

frequency energy over the total energy (HF/total) of atropine treated rats was higher than 

baseline (control). 
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CHAPTER I 

INTRODUCTION 

Heart rate variability (HRV) refers to the beat-to-beat timing variations of the 

EKG signal or the RR intervals. 

A heartbeat consists of a rhythmic contraction (systole) and relaxation (diastole) of the 

heart muscle. The heartbeat starts with a signal from the sino-atrial (SA) node, followed 

by the depolarization of the atrium, and then the depolarization of the ventricles. This is 

expressed by the P, QRS, T complex in an electrocardiogram (Figure 1.1), The P section 

is the atrium contraction portion of the wave form, the QRS section, is the section when 

the atrium starts to relax and the ventricle starts to contract, and the T section, is the 

section when the ventricle starts to relax. The heart beat or the heart rate (HR) is partially 

regulated by the Autonomic Nervous System (ANS). The ANS consists of the 

sympathetic nervous system (SNS), which causes a faster depolarization of the ventricles 

causing the HR to increase, and the parasympathetic nervous system (PNS), which causes 

a slower depolarization of ventricles causing a decrease in the HR. The balance between 

the SNS and the PNS, also known as the sympathovagal balance determine the variability 

of the heartbeat. Some pharmacological agents are also known to affect the HR and HRV. 

1 
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Heart rate variability (HRV) analysis has proven to be an important tool for 

assessing autonomic nervous system activity. For instance, it has been used during the 

dipyridamole echocardiographic test, to evaluate if spectral analysis of RR interval 

variability makes it possible to differentiate ischemic from nonischemic responses. In this 

test, the spectral components of HRV (total power, very low frequency power, low 

frequency power and high frequency power) were analyzed (during dipyridamole 

infusion in patients with coronary artery disease) just before and after the onset of 

ischemia-related events (peak dipyridamole effect) [6]. It has been used to study acute 

hypoxia in fetal lambs by investigating the changes in the power spectral pattern of HRV 

during acute hypoxia [8] and to study the onset of ventricular tachycardia in acute 

myocardial infarction by analyzing the power spectral components of HRV [5]. Although 

raw EKG signal does provide critical information, the inter-beat interval (R-R Interval) 

analysis can provide additional information that can lead to early detection of a possible 

change in the activity of the autonomic nervous system. HRV analysis can be performed 

using different tools, and Wavelet Transform (WT) is one such tool. 

The WT is suitable for measuring non-stationary signals in which frequency 

changes with time [7]. Biological signals like HR are non-stationary in that the HR keeps 

changing because of a number of factors previously mentioned. Since WT can provide 

both the time and frequency information simultaneously, it has gained interest during the 

last decade in accurately predicting heart disease. 
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This project proposes to modify an existing algorithm for extracting the R-R 

interval from EKG data sets, validate it with the data sets from a given rats experiment 

and then use WT technique to compute the time-frequency domain energy quantities, 

which will then be statistically analyzed to quantify the HRV. This project will use the 

data obtained previously from the study of the effects of two pharmacological agents, 

atropine and propranolol, on laboratory rats as the basis for the analysis. 

Figure 1.1 EKG Complex [16] 
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CHAPTER II 

LITERATURE REVIEW 

QRS Algorithm 

Thompkins J et al. devised a real-time QRS detection algorithm in 1985. It was 

able to detect the QRS complexes based upon analysis of slope, amplitude and width. 

Their algorithm was able to detect about 99.3 percent of the QRS complexes. This 

algorithm is also known as the “Thompkins” method [12]. Another method of detecting 

QRS complexes, known as the “So and Chan” method, was devised in 1997. They used a 

first derivative approach to build a real-time ambulatory ECG monitor to detect the QRS 

complexes [10]. Recently in 2004, Timo Bragge et al. devised a high-resolution QRS 

detection algorithm for sparsely sampled ECG recordings. They reported that it 

accurately estimated the R-wave fiducial points from extremely low (sparsely) sampled 

ECG recordings, i.e., the ECG recordings that used a sampling frequency of less than 500 

Hz. [13]. [3] used a steep slope method, which adaptively changes the threshold. 

In general, the HRV analysis methods can be divided into time domain, frequency 

domain and non-linear method. 

4 
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Time Domain Analysis Method of HRV Analysis 

Time domain analysis of HRV involves statistical analysis of various aspects of 

the R-R data. For example, [1] performed a time-domain analysis of HRV by computing 

the mean, standard deviation and also the root mean square of successive RR intervals 

(RMSSD). 

Other time domain parameters that have been measured are: 

SDANN – the standard deviation of the average NN (or RR) intervals. SDANN is 

said to reflect components of autonomic regulation largely related to sympathetic 

activation [15]. [15] proved that it might be an important prognostic factor in patients 

with severe circulatory failure and atrial fibrillation. 

HRV triangular index – the integral of the density distribution (that is, the number 

of all NN intervals) divided by the maximum of the density distribution. This geometric 

measure is used for long-term analysis of HRV and hence is influenced by lower 

frequencies than the higher frequencies [9]. 

Frequency Domain Analysis Method 

[5] presented a study of the onset of ventricular tachycardia in acute myocardial 

infarction using frequency domain analysis They found that the power spectral analysis 

of components of HRV had the potential to quantify the cardiac autonomic tone during 

ambulatory electrocardiograph recording. They analyzed the power spectral components 

of very low frequency power (VLF), which had the frequency range of 0.0033-0.04 Hz, 

https://0.0033-0.04
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low frequency (LF) of frequency range 0.04-0.15 Hz and high frequency (HF) of 

frequency range of 0.15-0.4 Hz power. The areas under the curve were computed and it 

was found that the total power of HRV increased progressively before the onset of 

ventricular tachycardia episodes [4]. 

Non-linear Analysis Methods 

Some of the non-linear analysis methods include the Poincare plots, the chaos 

theory, and time-frequency analysis methods. The WT is considered a class of time-

frequency transform, which include the Wigner-Ville and Gabor short-time Fourier 

transform (STFT). STFT had a problem with resolution; it was able to give a band of 

frequencies in a given time interval but not the exact time-frequency representation of a 

signal. Wavelet Transform uses the principle of Multi-Resolution Analysis in which the 

signal is analyzed at different frequencies and at different resolutions [8]. Wavelet 

transforms are currently being used more commonly, as they can provide information in 

the time-frequency domain. Some of the advantages using the time-frequency methods 

are the ability to identify which frequency occurs in what time and near perfect 

reconstruction of the signal back to its original form from the transform coefficients 

without the requirement for oversampling [5]. 

The continuous wavelet transform (CWT) was developed to overcome the 

problem of resolution in STFT. Similar to STFT in which a window function is 

https://0.04-0.15
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multiplied with the signal and integrated over all times, CWT used a mother wavelet, 

which is multiplied with the signal and integrated over all times [7]. 

The CWT is as defined by equation 4.1: 

(4.1) 

Here x(t) is the signal which is multiplied with a transforming function, Ψ(t), also 

known as the mother wavelet. The transfor0kkmed signal is a function of τ and s, which 

are known as the translation and scale parameters. The term 1/(sqrt s) is a constant 

to make the transformed signal to have the same energy at every scale. The translation 

parameter relates to the location of the window in time as the window is shifted through 

the signal [7]. 

The scale is defined as 1/frequency. Hence, low frequencies (high scales) 

correspond to information of a signal which spans over (a larger time span) the entire 

signal and high frequency (low scale) corresponds to the detailed information that lasts a 

relatively short time. As a mathematical operation, scaling either dilates or compresses a 

signal, which means that, larger scales correspond with dilated or stretched out signal and 

smaller scales correspond with compressed signal [7]. 

The computation of CWT is as follows. Let x(t) be the signal to be analyzed. A 

mother wavelet is chosen which serves as a prototype for all windows in the process, 

hence the name mother wavelet. All windows that are used will be the dilated or 

compressed and shifted (translation) versions of the mother wavelet. Some of the 
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commonly used mother wavelets used are the Haar, Daubechies 4 and Morlet. Once the 

mother wavelet is chosen, the procedure starts with a scale s=1, for convenience, and 

increases i.e., starting for high frequencies to low frequencies. Hence s=1 will correspond 

to the most compressed wavelet and as the value of s is increased the wavelet will dialate. 

Hence the first value will be calculated according to the equation 4.1 at tau=0 and s=1. 

The wavelet is the shifted by tau amounts to a location t=tau, and with the same scale 

s=1, the transform value is calculated. This is repeated until the wavelet reaches the end 

of the signal. Hence one row of values for the time-scale plane for s=1 is calculated. 

Then, s is increased by a small amount and since this is a continuous transform, both the 

tau and s need to be incremented continuously. This procedure is repeated for every value 

of s and once it is done for every required value of s, the computation of CWT is done. 

Figure 2.1 (Time (sec) along X-axis and Amplitude along Y-axis) shows the computation 

of CWT for s=1 (high frequencies) at four different τ values. The blue window should be 

as narrow as the highest frequency in the signal. Hence the signal is localized in time by 

shifting the wavelet in time, and it is localized in scale (frequency) by changing the value 

of s [7]. 
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Figure 2.1 Signal and wavelet function with s=1 [7] 

If the signal has a spectral component that is the same as s, then the product of the 

wavelet with the signal at the location will be a large value, and at other times it will be 

either small, or zero. Hence at t=110ms and s=1 as seen in Figure 2.1 (Time (sec) along 

X-axis and Amplitude along Y-axis), the CWT of the signal will be large. 
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Figure 2.2 Signal and wavelet function with s=5 [7] 
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Figure 2.3 Signal and wavelet function with s=20 [7] 

Figure 2.2 (Time (sec) along X-axis and Amplitude along Y-axis) and Figure 2.3 

(Time (sec) along X-axis and Amplitude along Y-axis) explain this process with s=5 and 

s=20. As seen, the width of the window increases and the scale increases (frequency 

decreases). Hence as the scale increases the lower frequency components are detected [7]. 

The discrete wavelet transform (DWT) is computed with the main idea being the 

same as CWT, multiresolution analysis. DWT is important in that it provides coarse and 

detailed information by decomposing the signal. The detailed information is used to 
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12 

calculate the variability power of high and low frequencies which, in our case, is needed 

to quantify the effects of atropine and propranolol. Hence, DWT is used in this study. 

Here digital filtering techniques are used to calculate the time-scale representation i.e., 

filters of different cutoff frequencies are used to analyze the signal at different scales. The 

signal is passed through a series of high pass filters to analyze the higher frequencies, and 

it is passed through a series of low pass filters to analyze the lower frequencies. In DWT, 

the scale is changed by upsampling (increasing) and downsampling (subsampling) 

operations. Subsampling corresponds to reducing the sampling rate or removing some of 

the samples of the signal. Subsampling by two refers to dropping every other sample of 

the signal. At higher scales (lower frequencies), the sampling rate can be decreased, 

according to Nyquist’s rule, which states the sampling frequency to be twice that of the 

highest frequency present. The scale parameter s can be discretized on a logarithmic 

scale, and the time parameter is discretized with respect to the scale parameter, i.e., a 

different sampling rate is used for every scale (dyadic sampling grid). Hence the DWT 

uses a dyadic grid, with the logarithmic base of 2, in which case the scales 2, 4, 6, 8, 16, 

… are computed. Since the discrete scale changes by a factor of 2, the sampling rate is 

reduced for the time axis by a factor of 2 at every scale [7]. 

The procedure starts by passing the signal through a halfband low pass filter. Half 

of the samples can be eliminated according to the Nyquist’s rule. Discarding every other 

sample will subsample the signal by two; the signal will have half the number of points. 

The scale of the signal is now doubled. The low pass filter removes the high frequency 
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information, but leaves the scale unchanged. Only the subsampling process will change 

the scale, i.e., the low pass filtering halves the frequencies, but leaves the scale 

unchanged. The signal is then subsampled by 2 since half the number of samples are 

redundant. 

The DWT analyzes the signal at different scales by decomposing the signal into 

coarse approximation and detail information. Successive high pass and low pass filtering 

of the time domain signal results in the decomposition of the signal into different 

frequency bands. Hence the original signal is first passed through a halfband high pass 

filter and a low pass filter. After the filtering, half the samples can be eliminated 

according to Nyquist’s rule. The signal can then be subsampled by 2, by discarding every 

other sample. This constitutes one level of decomposition. This procedure is repeated for 

further decomposition, and at every level, filtering and subsampling will result in half the 

number of samples (half the time resolution) and half the frequency band spanned 

(double the frequency resolution). Figure 2.5 explains this principle where x[n] is the 

original signal to be decomposed and h[n] and g[n] are low pass and high pass filters, 

respectively. The bandwidth of the signal at every level is denoted by ‘f’ [7]. 
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Figure 2.4: DWT algorithm [7] 
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15 

[6] used WT during dipyridamole-induced myocardial ischemia. They assessed 

the spectral components of HRV using WT analysis for the last 5 min before the 

beginning of the test and for 5 min after the onset of ischemia-related events. They found 

a greater increase in LF power and in LF/HF ratio in patients with multivessel coronary 

artery disease than in those with less coronary involvement. 
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CHAPTER III 

METHODOLOGY AND PROCEDURE 

In this study, five different rats were used, and the baseline condition recordings 

were made prior to injecting the rats with atropine or propranolol. Each baseline, atropine 

treatment group and propranolol treatment group had nine segments of data, each 

segment being one-minute recordings. Short term data analysis was done by analyzing 

each segment of the recording, and longer term data analysis was done by concatenating 

the data segments in which the variability power was calculated in each section, and then 

the average of power was taken. The data was sampled at a rate of 5000 Hz. 

The procedure in this study is listed as follows: 

1. The text files were read, and graphs were generated for visual inspection. 

2. A modification to [3] steep slope method is being tested. [2] found that digital 

filtering methods and first derivative methods for QRS (peak) detection gave good 

results. A first derivative algorithm specified by [2] was chosen for this study. 

3. The fiducial points or the R-wave peaks of each heartbeat were extracted by 

calculating the slope of each waveform using the formula specified by [2]: 

slope(n) = -2*a(n-2)-a(n-1)+a(n+1)+2*a(n+2) were ‘a(n)’ represents the amplitude of the 

EKG data at discrete time n. 

16 
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4. The steep slope method of QRS detection was used which is based on the 

comparison of an absolute value of slope (abs(S)) of the EKG signal and a threshold 

value M (‘S’ is the slope). A QRS (peak) is detected if abs(S) >= M. Initially, the 

threshold value M was set to 0.6*abs(S). So when abs(S) > M, a QRS (peak) was 

detected. Now a maximum of the absolute value of slope was searched in an interval of 

250ms, and that will now be used to calculate the next threshold value; M = 0.6*max 

(abs(S)). 

5. The threshold value M was limited to 1.5 times its previous detected QRS peak 

in order to eliminate any extrasystoles or artifacts that might have been introduced during 

EKG recording. 

6. Once all the absolute slope values were calculated, the resultant series were 

plotted again for inspection against the original EKG to check and see if any peaks had 

been missed. 

7. R-wave peaks, i.e., maximum values within every 250 points were inspected, 

and their corresponding time values were obtained. Once the time of every R-wave peak 

was obtained, the RR interval was then calculated, which is the difference between the 

times of two successive R-wave peaks. 

8. Once the RR interval was obtained, the mean RR value was also calculated and 

beats per minute was also calculated, which is bpm = 60 / (time difference of two 

successive peaks). 
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9. The RR tachogram was then obtained by plotting the RR interval against time. 

10. The QRS algorithm was validated statistically by hand counting the number of 

R-wave peaks detected and checked for any missing peaks. The RR tachogram data was 

then resampled at 10 Hz, using linear interpolation, assuming that the maximum 

frequency contained in the data was less than 5 Hz. According to Shannon’s sampling 

theorem, the sampling rate should be greater than twice the highest frequency of the 

signal. In this study, the maximum frequency of heart rate for rats is 5 Hz (420BPM). The 

high frequency ranged from 1.78 Hz to 3.5 Hz and the low frequency ranged from 0.4 Hz 

to 1.7 Hz. Hence 10 Hz sampling frequency is adequate. 

11. Daubechies-2 and Daubechies-4 were used as mother wavelets for the wavelet 

transformation of the resampled data. 

12. As mentioned above in the literature, CWT or DWT can be used for 

multiresolution analysis. In our case, since we needed to quantify the effects of atropine 

and propranolol, we needed to find the variability power of high frequency and low 

frequency present in the signal. This was obtained by DWT, in which, the signal was 

passed through a series of low pass and high pass filters, which decompose the signal into 

coarse information and detail information respectively. The variability power was 

obtained from the detail information. 

13. Using DWT, the signal was decomposed into wavelet coefficients (coarse and 

detail coefficients). At the first level, the scaled wavelets compared to the length of two 

(21) consecutive RR intervals and the level above it to a length of four (22) consecutive 
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RR intervals. Hence the initial levels (2, 4, 8,…) have a smaller value of dilation factor, 

which represents high-frequency variations in the signal, and the higher levels (32, 64, 

128,…) have a larger value of dilation factor, which would represent low-frequency 

variations in the signal. In this study, seven levels were examined and each level was 

labeled as 2, 4, 8, 16, 32, 64, and 128, with the numbers corresponding to the width of the 

wavelet with which the RR signal was compared. Table 3.1 lists the frequency range at 

each level and Figure 3.1 shows the shape of analyzing wavelet at each level. 

14. Once the detailed coefficients was obtained for each level, the variability 

power was calculated to each level as the sum of squares of the coefficients at each level. 

The high frequency (HF) variability power wa obtained from levels 2, 4, and 8 (1.78 Hz – 

3.5 Hz) i.e., the energy stored in the detailed part of these three levels represents the HF 

energy. The low frequency (LF) variability power was obtained from levels 16, and 32 

(0.4 Hz – 1.78 Hz) i.e., the energy stored in the detailed part of these two levels 

represents the LF energy. The square summation of the detailed coefficients at all levels 

was the total energy. Also calculated are values HF/total, LF/total and the ratio LF/HF. 
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Table 3.1 

Frequency range at each level 

Level Frequency (Hz) 

2 7.137-3.568 

4 3.568-1.784 

8 1.784-0.892 

16 0.892-0.4461 

32 0.446-0.223 

64 0.223-0.111 

128 0.111-0.041 
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Figure 3.1 Example of the shape of analyzing wavelet at each level. [14] 

15. Correlation between the baseline case and atropine and also for the baseline 

case and propranolol was calculated for each rat data to study if there was a steady 

correlation. 
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16. One way ANOVA was also performed on the data to show a significant 

difference (P<0.05) between the means of HF/total of baseline and atropine and also to 

see if there was a consistent difference among rats. 
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CHAPTER IV 

STATISTICAL ANALYSIS RESULTS FOR HRV 

A QRS algorithm was implemented in Matlab to extract the R-wave peaks and 

then to extract the RR intervals from the original EKG, and then HRV was analyzed 

using WT technique (source code is attached in Appendix A). First test was done to 

validate the QRS algorithm and RR interval, and the second test was done to statistically 

quantify the effects of atropine and propranolol. The results and the observations are 

summarized as follows: 

Validation of QRS Extraction Algorithm and RR Intervals 

Table 4.1 shows the validated results of the QRS algorithm and the RR intervals 

by checking the miss ratio in five different rats. This was done by hand counting the 

number of beats in random time periods (in 4 seconds, 5 seconds, 10 seconds out of the 

one minute segments) in the original EKG and comparing it with the number of R-wave 

peaks generated in the same time period. Similarly the RR intervals generated was found 

to be equal to one minus the number of beats. Appendix B contains the plots of the 

validated results for the QRS algorithm and the RR intervals. 

23 
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Table 4.1 

Validation results for QRS algorithm and RR intervals 

Rat 
Number Case 

Time period 
checked at 

random 
(sec) 

Number 
of beats in 
original 
EKG 

Number 
of 

peaks 
detected 

Number of 
RR 

intervals 

Miss 
Ratio 
(%) 

2 Baseline 24-28 21 21 20 0 
2 Baseline 45-55 56 56 55 0 
5 Baseline 10-15 28 28 27 0 
5 Baseline 40-50 57 57 56 0 
2 Atropine 6-10 32 32 31 0 
2 Atropine 22-32 79 79 78 0 
5 Propranolol 34-36 11 11 10 0 
5 Propranolol 50-55 26 26 25 0 

Figure 4.1 shows the original EKG and the detection of R-wave peaks in a 

baseline case. Figure 4.2 shows the RR tachogram and the beats per minute (BPM) Vs 

time for Rat 2. It was also seen from Figure 4.2 that the beats per minute of Rat 2 for 

baseline is averaged around 320BPM. 

Figure 4.3 shows the original EKG and the R-wave peaks detected for Rat 2 

injected with atropine. As seen in Figure 4.4, the beats per minute have increased to 

475BPM. Figure 4.5 shows the original EKG and the R-wave peaks detected for Rat2 

injected with propranolol, and Figure 4.6 shows the RR tachogram and the beats per 

minute, which are averaged at 315BPM. The same was observed in other rats.With the 

administration of atropine the heart rate increases, and with propranolol the heart rate 

decreases. 
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Figure 4.1: Original EKG and R-wave peaks of Rat 2 for baseline case 
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Figure 4.2: RR tachogram and Heart rate of Rat 2 for baseline case 
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Figure 4.3: Original EKG and R-wave peaks of Rat 2 for atropine case 
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Figure 4.4: RR tachogram and Heart rate of Rat 2 for atropine case 
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Figure 4.5: Original EKG and R-wave peaks of Rat 5 for propranolol case 
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Figure 4.6: RR tachogram and Heart rate of Rat 5 for propranolol case 
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Statistical Analysis of HRV 

Correlation between baseline and atropine and also between baseline and 

propranolol was evaluated by performing statistical analysis in SAS. The ANOVA 

between baseline and atropine and also between baseline and propranolol was calculated 

for the same rat, and also the variance among different rats was calculated to see if there 

was a consistent difference across different rats. 

Table 4.2 shows the results of HF/total for baseline and atropine, and Table 4.3 

shows the HF/total for baseline and propranolol. Table 4.3 shows the correlation and 

variance between baseline and atropine and between baseline and propranolol. In Tables 

4.2 and 4.3, column 1 is the rat number, column 2 is the type of mother wavelet 

(Daubechies-2 or Daubechies-4), column 3 is the mean HF/total value for baseline from 

nine segments and column 4 is the mean HF/total for atropine or propranolol from the 

nine segments for each rat. In Table 4.4, column 1 is the rat number, column 2 is the 

correlation and variance for each rat, column3 is the relation between baseline and 

atropine and column 4 is the relation between baseline and propranolol. 
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Table 4.2. 

HF/total for baseline and atropine using Daubechies2 and Daubechies4 as wavelets 

Rat 
Number Wavelet HF/total (Baseline) HF/total 

(Atropine) 
Mean Std Dev Mean Std Dev 

2 Daubechies4 0.43122 0.18480 0.76309 0.05275 
Daubechies2 0.54072 0.13792 0.81061 0.05105 

5 Daubechies4 0.51609 0.11595 0.74657 0.09974 
Daubechies2 0.56950 0.16517 0.58938 0.39419 

122 Daubechies4 0.50578 0.08087 0.75191 0.06326 
Daubechies2 0.56928 0.10534 0.77141 0.06323 

123 Daubechies4 0.53627 0.11366 0.59377 0.17563 
Daubechies2 0.66371 0.14666 0.62317 0.20103 

124 Daubechies4 0.54882 0.21180 0.69168 0.21791 
Daubechies2 0.61066 0.17843 0.64256 0.14914 

Table 4.3. 

HF/total for baseline and propranolol using Daubechies2 and Daubechies4 as wavelets 

Rat 
Number Wavelet 

HF/total (Baseline) HF/total 
(Propranolol) 

Mean Std Dev Mean Std Dev 
2 Daubechies4 0.43122 0.18480 0.53070 0.17108 

Daubechies2 0.54072 0.13792 0.55420 0.20674 
5 Daubechies4 0.51609 0.115950 0.53101 0.15810 

Daubechies2 0.56950 0.16517 0.61502 0.14983 
122 Daubechies4 0.50578 0.08087 0.64341 0.20094 

Daubechies2 0.56928 0.10534 0.61563 0.22317 
123 Daubechies4 0.57627 0.11366 0.48867 0.09974 

Daubechies2 0.66371 0.14666 0.51414 0.08264 
124 Daubechies4 0.54882 0.21180 0.66535 0.15710 

Daubechies2 0.61066 0.17843 0.73043 0.15811 
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Table 4.4 

Relation between baseline and atropine and between baseline and propranolol 

Rat 
Number 

Correlation or 
Variance 

Between baseline & 
atropine 

Between baseline & 
propranolol 

*D4 **D2 D4 D2 
2 Correlation 0.17313 -0.21133 -0.00633 -0.12267 

ANOVA(P value) 0.000 0.000 0.0081 0.0560 
5 Correlation 0.49957 0.53790 -0.06864 0.25970 

ANOVA(P value) 0.001 0.7446 0.0519 0.0303 
122 Correlation 0.18942 -0.01243 -0.23193 -0.61837 

ANOVA(P value) 0.0005 0.0002 0.0238 0.0039 
123 Correlation 0.60163 0.40121 0.03469 0.23799 

ANOVA(P value) 0.8380 0.2323 0.0458 0.0058 
124 Correlation 0.07127 0.26587 0.45260 0.17362 

ANOVA(P value) 0.0417 0.0229 0.0078 0.0116 
*D4: Daubechies 4 wavelet 

**D2: Daubechies 2 wavelet 

As can be seen from Table 4.2 and Table 4.3, the mean energy distribution in the 

high frequency part for baseline is below 0.56, while that of atropine is greater than 0.6. 

Atropine causes an increase in the sympathetic nervous system activity thus causing the 

heart rate to increase. For some rats with propranolol, the mean energy distribution in the 

high frequency part is above 0.56, and for some it is below 0.56; in general they are close 

to the baseline value. At first propranolol causes an increase in the heart rate, but later it 

decreases to a value close to the baseline value. 
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Table 4.4 shows a positive correlation between baseline and atropine for the 

different rats using Daubechies 4 as mother wavelet. Rats 2, 5 and 122 seem to have a 

negative correlation, and rats 123 and 124 seem to have a positive correlation between 

baseline and propranolol using Daubechies 4. This positive correlation for rats 123 and 

124 mean that there is not much decrease in the heart rate i.e., not much variability in the 

heart rate when propranolol was injected, and the heart rate was close to the baseline 

case. 

One-way ANOVA was performed using Splus, and it can be seen from Table 4.3 

that the P value for baseline and atropine is 0 for Rat 2, 0.001 for Rat 5, 0.0005 for Rat 

122, 0.838 for Rat 123 and 0.0417 for Rat 124. P value for baseline and propranolol is 

0.0081 for Rat 2, 0.0519 for Rat 5, 0.0238 for Rat 122, 0.0458 for Rat 123 and 0.0078 for 

Rat 124. All these values are observed for Daubechies 4 wavelet. 

Correlation and variance among rats was observed to see if there was a consistent 

difference among different rats. Table 4.4 shows this observation. In table 4.4, column 1 

is the rat number, column 2 shows the relation among rats with baselines, column 3 

shows the relation among rats injected with atropine and column 4 shows the relation 

among rats injected with propranolol. 
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Table 4.5 

Correlation and variance among rats 

Rat 
Number 

Comparing 
baselines of two rats 

Comparing atropine 
effects of two rats 

Comparing 
propranolol effects 

of two rats 
Corr P value Corr P value Corr P value 

2 & 122 0.08 0.816 -0.38 0.005 -0.17 0.036 
5 & 124 -0.55 0.005 NA NA NA NA 
2 & 123 0.09 0.901 0.45 0.487 -0.05 0.005 
2 & 124 -0.66 0.04 NA NA NA NA 

2 & 5 0.43 0.23 0.23 0.52 0.32 0.38 
5 & 123 -0.03 0.921 NA NA NA NA 
5 & 122 0.12 0.73 0.30 0.391 -0.006 0.98 

To determine if there is a consistent difference between two rats, one has to first 

check if their baselines are correlated. If the baselines are not correlated then there is no 

point in checking to see if there is a consistent difference between their atropine and 

propranolol readings. As seen in Table 4.5, the baselines of Rat 2 and Rat 122 have a 

positive correlation of 0.08 and a P value of 0.816. But there seemed to be a negative 

correlation between their atropine and propranolol values. The baselines of Rat 2 and Rat 

123 showed a positive correlation, but their propranolol readings were negatively 

correlated. The baselines of Rat 2 and Rat 5 showed positive correlation and so did their 
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atropine and propranolol readings. The baselines of Rat 5 and Rat 124 have a negative 

correlation of -0.55. The baselines of Rat 2 and Rat 124 were negatively correlated with 

–0.66. The baselines of Rat 5 and Rat 123 were negatively correlated with –0.03. 
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CHAPTER V 

CONCLUSION AND DISCUSSION 

In this study, previously collected data were used to quantify the effects of 

pharmacological agents atropine and propranolol on five laboratory rats. A QRS 

detection algorithm using steep slope method was modified and validated. The RR 

intervals obtained from this algorithm were used to analyze HRV using WT 

technique. Results showed that the ratio of high frequency energy over the total 

energy (HF/total) had a positive correlation for baseline and atropine. Most rats 

showed a negative correlation for baseline and propranolol, and a couple of rats 

showed a positive correlation close to zero, showing that the heart rate reduced close 

to the baseline case, i.e., the heart rates were almost similar. 

Conclusion 

1. Validation of QRS detection algorithm was done statistically by hand 

counting the number of peaks and checking for any misses. The use of 

Menard et al. first derivative algorithm with Christov et al. steep slope method 

showed good results. There was no loss in QRS peak detection. The plots of 

validated results are as shown in Appendix B. 

37 
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2. Heart rate for baseline case of rats was observed at 320 BPM and for atropine 

case it was observed at 475BPM, validating the fact that atropine causes the 

heart rate to increase. The propranolol case was observed at 315BPM, which 

showed that by administration of propranolol the heart beats decreased and 

were close to the baseline case. 

3. HF/total showed a positive correlation for baseline and atropine case and a 

negative correlation for baseline and propranolol case using Daubechies 4 as 

mother wavelet. 

4. There is a significant difference between the means of HF/total of baseline 

and HF/total of atropine while the means of HF/total of baseline and 

propranolol were not significantly different. 

5. Haar wavelet and Daubechies 4 wavelets are used most of the time as mother 

wavelets and considered to be well suited for analysis of HRV. In this study 

Daubechies 2 wavelet was used to check the correlation. Although some 

results were quite close, but still Daubechies 2 wavelet did not show good 

results for HRV analysis. Out of the five rats, two showed a negative 

correlation between baseline and atropine. Also three rats out of the five 

showed a positive correlation 

between baseline and propranolol. 
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6. Correlation coefficient and analysis of variance were performed on individual 

rats, and they showed consistant difference for rats injected with atropine and 

propranolol. The results also showed that it was difficult to observe a 

consistent difference across rats. Among the seven sets of rats studied, only 

one set showed a consistent difference. This shows that the effects of atropine 

and propranolol depend on individual rats and hence cannot be generalized 

among rats. 

Discussion and Future Work 

1. Mean HF/total 

The mean HF/total for the baseline case was below 0.56 for all rats while that 

for atropine case was above 0.6 for four of the five rats using Daubechies 4 

wavelet. This is because the high frequency energy is higher for atropine case, 

which results in faster heart rate. For propranolol, some rats had below 0.56 

while some rats had above 0.56. They are close to the baseline case as 

propranolol activates the parasympathetic nervous system, which causes the 

heart rate to decrease and stay close to the baseline case. 

2. Missing heart beats 

It has been seen in rats that sometimes there is no heart beat for a few seconds. 

Figure 5.3 shows the original EKG and R-wave peaks and Figure 5.4 shows 

the RR tachogram, and the heart rate for Rat 5. It can be seen that for a period 
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of 5 seconds there is no heartbeat, and this can be seen as a big spike in the 

RR tachogram. Further study needs to be done to exactly quantify this effect. 

3. Although it should be expected that the high frequency energy for a rat 

injected with atropine should be higher compared to that of a baseline case, 

which reflects as an increased heart rate, Rat 123 did not show this difference 

as seen in Figure 5.1 (Rats numbered 1 through 5 are Rat 2, Rat 5, Rat 122, 

Rat 123 and Rat 124 respectively). The P value (0.8385) confirmed that there 

was no significant difference between the means of HF/total of baseline case 

and atropine case. This could perhaps be because of a lag in the recording 

times of when the rat was injected with atropine and when the actual 

recording of EKG took place. Figure 5.2 shows the variability power of 

baseline and propranolol in different rats. Rat numbers 1 through 5 are Rat 2, 

Rat 5, Rat 122, Rat 123 and Rat 124 respectively). 
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Figure 5.1 Variability power of baseline and atropine in different rats 

Variability Power of Baseline and Propranolol 
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Figure 5.2 Variability power of baseline and propranolol in different rats 



www.manaraa.com

 

 

 

 

 

             
    

42 

Figure 5.3: Original EKG and R-wave peaks of Rat 5 for baseline case 
with missing heart beats. 
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Figure 5.4: RR tachogram and Heart rate of Rat 2 for baseline case 
with missing heart beats. 
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APPENDIX A 

QRS DETECTION ALGORITHM IMPLEMENTED IN 

MATLAB 

46 
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M = dlmread('c:\data\Rat5\atrop+prop\Rat 5 EKG atro 9Feb04\Rat 5 EKG atro 9Feb04 

seg00.txt',','); 

len_M = length(M); 

t1 = [M(1):0.0002:M(len_M)]; 

t = t1'; 

a = M(:,2); 

%Plotting the original ECG 

figure(1);set(1,'Name','Original EKG & R Peaks'); 

subplot(2,1,1);plot(t,a); 

xlabel('Time (seconds)') % Label x-axis 

ylabel('Amplitude') % Label y-axis 

grid 

limit = (length(a)); 

len = limit-4; 
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for b = 1:len 

s1(b)=0; 

end 

s=s1'; 

s(1) = -2*a(1)-a(2)+a(4)+2*a(5); 

sth_temp = 0.6 * abs(s); 

sth = sth_temp(1); 

max_count=1; 

count_s=1; 

count=0; 

i=3; 

while i <= len 

if abs(s(i-2)) > sth 

for j = i:i+7 

s(j-1) = -2*a(j-2)-a(j-1)+a(j+1)+2*a(j+2); 

temp_s(count_s) = s(j-1); 
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count_s = count_s+1; 

end 

maxi_temp(max_count) = max(abs(temp_s)); 

max_count = max_count+1; 

for zerotemp_s = 1:count_s-1 

temp_s(zerotemp_s)=0; 

end 

i=j+1; 

maxi (max_count) = max(abs(s)); 

temp1 = 0.6 * maxi (max_count); 

if temp1 > 1.5 * maxi(max_count-1) 

sth = 1.5 * maxi(max_count-1); 

else 

sth = 0.6 * temp1; 

end 

els 

s(i-1) = -2*a(i-1)-a(i)+a(i+2)+2*a(i+3); 
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i=i+1; 

end 

end 

%Finding max every 250 points. 

k3=1; 

k4=1; 

index1=1; 

count_s=1; 

while k3 < length(s) 

for k4 = k3:k3+249 

if k4 > length(s),break,end 

temp_s1(count_s) = abs(s(k4)); 

count_s=count_s+1; 

end 

k3=k4; 

maxi_temp3(index1) = max(temp_s1); 

if maxi_temp3(index1) < 0.2 
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maxi_temp3(index1) = 0; 

else 

maxi_temp4(index1) = maxi_temp3(index1); 

index1=index1+1; 

end 

for zerotemp_s = 1:count_s-1 

temp_s1(zerotemp_s)=0; 

end 

count_s=1; 

end 

len_t2 = length(t); 

temp_lim = t(len_t2)-0.0008; 

t2=[M(1):0.0002:temp_lim]; 

t3 = t2'; 

len_s = length(s); 
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len_t3 = length(t3); 

if len_t3 < len_s 

d1 = len_s - len_t3; 

start = M(1) - (0.0002 * d1); 

elseif len_t3 > len_s 

d1 = len_t3 - len_s; 

start = M(1) + (0.0002 * d1); 

else 

start = M(1); 

end 

t4=[start:0.0002:temp_lim]; 

t5 = t4'; 

subplot(2,1,2); 

plot(t5,abs(s)); 

xlabel('Time (seconds)') % Label x-axis 

ylabel('Amplitude') % Label y-axis 
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grid 

cout=1; 

cout1=1; 

i1=1; 

i2=1; 

j1=1; 

time=0; 

dtloop=1; 

dt=1; 

dttemp=1; 

dttemp1=1; 

s_max=abs(s); 

s_max1=s_max'; 

len_maxitemp4=length(maxi_temp4); 

disp(len_maxitemp4); 

while i1 < len_maxitemp4 
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if dtloop > len_s,break,end 

if i1 > len_maxitemp4,break,end 

if s_max1(dtloop) == maxi_temp4(i1) 

cout=cout+1; 

j1=j1+1; 

time(j1) = t5(dtloop); 

i1=i1+1; 

dttemp(i1) = time(j1) - time(j1-1); 

if dttemp(i1) < 0.0700 

cout1=cout1+1; 

dttemp(i1)=0; 

time(j1)=time(j1-1); 

else 

dttemp1(i2) = dttemp(i1); 

i2=i2+1; 

t6(j1) = time(j1); 

end 

end 

dtloop = dtloop+1; 
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end 

%dt has just the RR values. 

for i2 = 2:length(dttemp1) 

dt(i2-1) = dttemp1(i2); 

bpm(i2-1) = 60/dt(i2-1); 

end 

%Mean RR 

mu_dt = mean(dt); 

disp('Mean RR'); 

disp(mu_dt); 

i2=1; 

for i1 = 3:length(t6) 

if t6(i1) == 0 

%t6(i1) = t6(i1); 

else 

t7(i2) = t6(i1); 

i2=i2+1; 
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end 

end 

len_t7=length(t7); 

len_dt=length(dt); 

t10=len_t7-1; 

dt2=len_dt-1; 

check1=0; 

%Plotting the RR Tachogram 

if length(t7) > length(dt) 

check1=1; 

t9=t7(1:t10); 

figure(2);set(2,'Name','RR & BPM'); 

subplot(2,1,1);plot(t9,dt); 

xlabel('Time (seconds)') % Label x-axis 

ylabel('R-R') % Label y-axis 

grid 

elseif length(dt)>length(t7) 

dt1=dt(1:dt2); 
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figure(2);set(2,'Name','RR & BPM'); 

subplot(2,1,1);plot(t9,dt1); 

xlabel('Time (seconds)') % Label x-axis 

ylabel('R-R') % Label y-axis 

grid 

else 

%Plotting the RR Tachogram 

figure(2);set(2,'Name','RR & BPM'); 

subplot(2,1,1);plot(t7,dt); 

xlabel('Time (seconds)') % Label x-axis 

ylabel('R-R') % Label y-axis 

grid 

end 

%BPM plot 

if length(t7) > length(bpm) 

subplot(2,1,2);plot(t9,bpm); 

xlabel('Time (seconds)') % Label x-axis 

ylabel('Heart Rate (bpm)') % Label y-axis 
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grid 

else 

subplot(2,1,2);plot(t7,bpm); 

xlabel('Time (seconds)') % Label x-axis 

ylabel('Heart Rate (bpm)') % Label y-axis 

grid; 

end 

%Sampling the RR Tachogram data with Linear Interpolation 

len_t7 = length(t7); 

t8 = t7; 

if check1==1 

t11 = t9; 

interp1(t11,dt,t9(t10)-0.3); 

x=t9(1):0.1:t9(t10)+0.1; 

y=interp1(t11,dt,x,'linear'); 

else 
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interp1(t8,dt,t7(len_t7)-0.3); 

x=t7(1):0.1:t7(len_t7)+0.1; 

y=interp1(t8,dt,x,'linear'); 

end 

%Applying Discrete Wavelet Transform using DAUBECHIES 4 as Mother Wavelet. 

[cA,cD] = dwt(y,'db4'); 

l_a = length(a); 

A1 = upcoef('a',cA,'db4',1,l_a); 

D1 = upcoef('a',cD,'db4',1,l_a); 

%subplot(5,1,2); plot(A1); title('Approximation A1'); 

%subplot(5,1,3); plot(D1); title('Detail D1'); 

%Decomposing the R-R at level 7. 

[C,L] = wavedec(y,7,'db4'); 
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cA7 = appcoef(C,L,'db4',7); 

[cD1,cD2,cD3,cD4,cD5,cD6,cD7] = detcoef(C,L,[1,2,3,4,5,6,7]); 

check1=0; 

cD11=cD1(1:(length(cD1)-7)); 

cD12=cD11'; 

cD13=cD11*cD12; 

cD21=cD2(1:(length(cD2)-7)); 

cD22=cD21'; 

cD23=cD21*cD22; 

cD31=cD3(1:(length(cD3)-7)); 

cD32=cD31'; 

cD33=cD31*cD32; 

cD41=cD4(1:(length(cD4)-7)); 

cD42=cD41'; 
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cD43=cD41*cD42; 

cD51=cD5(1:(length(cD5)-7)); 

cD52=cD51'; 

cD53=cD51*cD52; 

cD61=cD6(1:(length(cD6)-7)); 

cD62=cD61'; 

cD63=cD61*cD62; 

cD71=cD7(1:(length(cD7)-7)); 

cD72=cD71'; 

cD73=cD71*cD72; 

var_test = isnan(cD13); 

if var_test==1 

cD13=0; 

end 

var_test = isnan(cD23); 
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if var_test==1 

cD23=0; 

end 

var_test = isnan(cD33); 

if var_test==1 

cD33=0; 

end 

var_test = isnan(cD43); 

if var_test==1 

cD43=0; 

end 

var_test = isnan(cD53); 

if var_test==1 

cD53=0; 

end 

var_test = isnan(cD63); 

if var_test==1 

cD63=0; 

end 

var_test = isnan(cD73); 
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if var_test==1 

cD73=0; 

end 

high_var_power = cD13+cD23+cD33; 

low_var_power = cD43+cD53+cD63; 

total_var_power = cD13+cD23+cD33+cD43+cD53+cD63+cD73; 

ratio_high = high_var_power/total_var_power; 

ratio_low = low_var_power/total_var_power; 

dlmwrite('c:\MATLAB6p5\work\Results\Rat5\atroprop\9Feb04\mean_RR.xls',mu_dt); 

dlmwrite('c:\MATLAB6p5\work\Results\Rat5\atroprop\9Feb04\result_high.xls',high_var 

_power); 

dlmwrite('c:\MATLAB6p5\work\Results\Rat5\atroprop\9Feb04\result_low.xls',low_var_ 

power); 

dlmwrite('c:\MATLAB6p5\work\Results\Rat5\atroprop\9Feb04\result_total.xls',total_var 

_power); 

dlmwrite('c:\MATLAB6p5\work\Results\Rat5\atroprop\9Feb04\result_ratio_high.xls',rati 

o_high); 
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dlmwrite('c:\MATLAB6p5\work\Results\Rat5\atroprop\9Feb04\result_ratio_low.xls',rati 

o_low); 

%Applying Discrete Wavelet Transform using DAUBECHIES 2 as mother wavelet. 

[cAA,cDD] = dwt(y,'db2'); 

l_a = length(a); 

AA1 = upcoef('a',cAA,'db2',1,l_a); 

DD1 = upcoef('a',cDD,'db2',1,l_a); 

%Decomposing the R-R at level 7. 

[C1,L1] = wavedec(y,7,'db2'); 

cAA7 = appcoef(C1,L1,'db2',7); 

[cDD1,cDD2,cDD3,cDD4,cDD5,cDD6,cDD7] = detcoef(C1,L1,[1,2,3,4,5,6,7]); 

check1=0; 

cDD11=cDD1(1:(length(cDD1)-7)); 
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cDD12=cDD11'; 

cDD13=cDD11*cDD12; 

cDD21=cDD2(1:(length(cDD2)-7)); 

cDD22=cDD21'; 

cDD23=cDD21*cDD22; 

cDD31=cDD3(1:(length(cDD3)-7)); 

cDD32=cDD31'; 

cDD33=cDD31*cDD32; 

cDD41=cDD4(1:(length(cDD4)-7)); 

cDD42=cDD41'; 

cDD43=cDD41*cDD42; 

cDD51=cDD5(1:(length(cDD5)-7)); 

cDD52=cDD51'; 

cDD53=cDD51*cDD52; 
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cDD61=cDD6(1:(length(cDD6)-7)); 

cDD62=cDD61'; 

cDD63=cDD61*cDD62; 

cDD71=cDD7(1:(length(cDD7)-7)); 

cDD72=cDD71'; 

cDD73=cDD71*cDD72; 

var_test = isnan(cDD13); 

if var_test==1 

cDD13=0; 

end 

var_test = isnan(cDD23); 

if var_test==1 

cDD23=0; 

end 

var_test = isnan(cDD33); 

if var_test==1 

cDD33=0; 
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end 

var_test = isnan(cDD43); 

if var_test==1 

cDD43=0; 

end 

var_test = isnan(cDD53); 

if var_test==1 

cDD53=0; 

end 

var_test = isnan(cDD63); 

if var_test==1 

cDD63=0; 

end 

-

var_test = isnan(cDD73); 

if var_test==1 

cDD73=0; 

end 

high_var_power = cDD13+cDD23+cDD33; 
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low_var_power = cDD43+cDD53+cDD63; 

total_var_power = cDD13+cDD23+cDD33+cDD43+cDD53+cDD63+cDD73; 

ratio_high = high_var_power/total_var_power; 

ratio_low = low_var_power/total_var_power; 

%dlmwrite('c:\MATLAB6p5\work\Results\Rat2\baseline\3Feb04\mean_RR1.xls',mu_dt) 

; 

dlmwrite('c:\MATLAB6p5\work\Results\Rat5\atroprop\9Feb04\result_high1.xls',high_va 

r_power); 

dlmwrite('c:\MATLAB6p5\work\Results\Rat5\atroprop\9Feb04\result_low1.xls',low_var 

_power); 

dlmwrite('c:\MATLAB6p5\work\Results\Rat5\atroprop\9Feb04\result_total1.xls',total_va 

r_power); 

dlmwrite('c:\MATLAB6p5\work\Results\Rat5\atroprop\9Feb04\result_ratio_high1.xls',ra 

tio_high); 

dlmwrite('c:\MATLAB6p5\work\Results\Rat5\atroprop\9Feb04\result_ratio_low1.xls',rat 

io_low); 



www.manaraa.com

 

 

 

 

 

 

 
 

  

         
 

 
 

 

 

 

 

 

 

 

APPENDIX B 

PLOTS FOR VERIFYING THE QRS ALGORITHM AND RR 

INTERVALS 

69 
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Figure B.1: Original EKG and R-wave peaks of Rat 2 for baseline case 
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Figure B.2: RR tachogram and Heart rate of Rat 6 for baseline case 
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Figure B.3: Original EKG and R-wave peaks of Rat 2 for baseline case 
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Figure B.4: RR tachogram and Heart rate of Rat 2 for baseline case 
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Figure B.5: Original EKG and R-wave peaks of Rat 2 for baseline case 
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Figure B.6: RR tachogram and Heart rate of Rat 2 for baseline case 
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Figure B.7: Original EKG and R-wave peaks of Rat 2 for baseline case 
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Figure B.8: RR tachogram and Heart rate of Rat 2 for baseline case 
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Figure B.9: Original EKG and R-wave peaks of Rat 2 for atropine case 
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Figure B.10: RR tachogram and Heart rate of Rat 2 for atropine case 
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Figure B.11: Original EKG and R-wave peaks of Rat 2 for atropine case 
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Figure B.12: RR tachogram and Heart rate of Rat 2 for atropine case 
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Figure B.13: Original EKG and R-wave peaks of Rat 5 for propranolol case 
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Figure B.14: RR tachogram and Heart rate of Rat 5 for propranolol case 
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Figure B.15: Original EKG and R-wave peaks of Rat 5 for propranolol case 
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Figure B.16: RR tachogram and Heart rate of Rat 5 for propranolol case 
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